Symptoms and conditions of internal jugular vein stenosis caused by boney cervical spine compression

Ross Hauser, MD

We know you may be reading this article for two main reasons. You have been searching for possible answers to your mysterious neurologic-type symptoms that no one can determine why you suffer with them, or, an enlightened clinician suspects that your jugular vein has something to do with it and he/she orders a Jugular Vein Doppler Ultrasound or jugular venography to take pictures of your jugular vein and its branches. Your provider may suspect or want to rule out a clog or a narrowing of the vein that is causing circulatory issues. If Eagle syndrome has been suggested to you, please see our article: Eagle syndrome and the Diagnosis of Stylohyoid Complex Syndrome, for a more detailed understanding of jugular vein compression caused by a hypermobile or elongated styloid bone.

Internal jugular vein stenosis

We have been helping people with “mystery symptoms” and “mystery diagnoses” for more than three decades. When we sit in the examination room with new patients, even after a careful screening process to assess their candidacy for the treatments we offer, we still sometimes get the look of confusion in the patient’s eyes when we suggest a problem that has not been suggested to them before. Sometimes such is the case with internal jugular vein stenosis.

Here is an example: A patient has just completed real-time testing at our center. Real-time means we know the results as the test is being performed, this is explained further below. We will sit with the patient and their spouse or partner and then tell them that we believe many of their symptoms are coming from compression of their jugular vein, the compression is being caused by pressure from the cervical vertebrae or a problem with the styloid process at the base of the skull and possible carotid artery syndrome. (We are going to discuss this further below).

The patient and the spouse will look at me, our staff, and our associates and on occasion say: “How come no one else figured this out? No one has even said jugular vein to us.” Sometimes the patient and their spouse will feel a sense of enlightenment, it makes sense. Sometimes we have to explain further because these people have been on a long medical journey, they have already had numerous diagnoses and numerous treatments, but nothing has helped them. Honestly, sometimes these people think, “Great another diagnosis,” add it to the pile. In this article, we are going to share a lot of information. I hope some of it makes a lot of sense to you.

Simple keynotes to this article:

To understand the message of this article we will have to review some core ideas.

  • The internal jugular vein drains toxins and waste products from the brain.
  • The internal jugular vein can be compressed by the lateral mass of the atlas and an elongated styloid bone.
  • Internal jugular vein compression can cause intracranial hypertension causing many symptoms like vision problems, digestive problems like nausea, headache, dizziness and ringing in the ears, dissociation, anxiety, personality disorders, and depression.
  • All the fluids and all the nerves that go into the brain and come out of the brain have to travel through the neck.
  • If your jugular vein is compressed, parts of the brain that may have a “drainage” problem creating a fluid backup are the parts of the brain that understand higher cognitive functioning problem-solving. Here high-level brain activity involves the frontal lobe and when you have intracranial hypertension or the fluid can’t get out of the brain because the jugular vein is compressed it can affect the frontal lobe causing the tell-tale symptoms of headaches and brain fog.

When mystery ailments occur, with no apparent diagnosis or explanation, I refer to “Hauser’s Law.” Hauser’s Law tells us to look at these mysterious and unexplainable problems through neurology and find a structural problem (neck instability) that is causing neurological problems by creating compression in the neck.

The question we are looking to answer is: “What could be affecting the neurological processing of the patient?” At our clinic, when the patient has been given no reasonable explanation as to the cause of their symptoms, we explore ligamentous cervical instability (Neck instability) and see if the cervical spine is compressing vital structures including the jugular veins. We document problems of intracranial hypertension by various tests which we call “neck vitals.” I will cover this below.

Part 1: Symptoms of Internal jugular vein stenosis

  • Potential symptoms from internal jugular vein compression.
  • 149 patients had no specific clinical presentations.
  • Brain venous sinus outflow obstruction.
  • “Venous hypertensive myelopathy.
  • Jugular foramen syndrome – dysphagia (swallowing difficulties) and dysarthria (difficulty in speaking).
  • Transient monocular blindness is a problem with drainage.
  • Elongated styloid process and/or calcification of the stylohyoid ligament: Eagle Syndrome.
  • The connection to Ehlers-Danlos syndrome.
  • How does venous obstruction (jugular vein stenosis) occur in a neck? An explanation of cervical spine and neck instability.
  • Brain waste products or “Brain poop.”
  • You need to flush the brain to get rid of neuron poop.
  • My doctors are telling me I am not draining.

Part 2: The causes of internal jugular vein compression

  • What are we seeing in this image? The causes of internal jugular vein compression.
  • Overcrowding in the carotid triangle and the carotid sheath. A cause of internal jugular vein stenosis.
  • Compression of the carotid triangle – The muscles.
  • Compression in the carotid triangle – The cranial nerves.
  • Compression in the carotid triangle – the arteries and veins.
  • Ground zero: The carotid triangle and the internal jugular vein – When it’s a drainage problem.
  • Compression of the carotid triangle – The muscles.
  • Compression in the carotid triangle – The cranial nerves.
  • Compression in the carotid triangle – the arteries and veins.
  • Ground zero: The carotid triangle and the internal jugular vein – When it’s a drainage problem.
  • The veins that surround the cervical vertebrae.
  • How does venous obstruction (jugular vein stenosis) occur in a neck? An explanation of cervical spine and neck instability.149 patients with no specific clinical presentations

Part 2: The causes of internal jugular vein compression

  • Overcrowding in the carotid triangle and the carotid sheath. A cause of internal jugular vein stenosis.
  • Transcranial Doppler (TCD) and extracranial Doppler (ECD).
  • A typical patient’s medical history with static testing.
  • Posture-induced changes.
  • Compression of the carotid triangle – The muscles.
  • Compression in the carotid triangle – The cranial nerves.
  • Compression in the carotid triangle – the arteries and veins.
  • Ground zero: The carotid triangle and the internal jugular vein – When it’s a drainage problem.
  • The veins that surround the cervical vertebrae.
  • How does venous obstruction (jugular vein stenosis) occur in a neck? An explanation of cervical spine and neck instability.
  • The internal jugular vein gets compressed by anterior subluxation of C1 and C0-C1 instability.
  • Atlantoaxial instability: C1 and C2 hypermobility causes cervical spine instability and artery, vein, and nerve compression.
  • The case for identifying loss of cervical lordosis as the cause of your symptoms.
  • Cervical spine ligaments as a cause of intracranial hypertension – So why this diagnosis of internal jugular vein stenosis?
  • Medication for jugular vein compression.
  • Stenting
  • Can you stent a stretched-out vein? When vein narrowing is caused by a stretched-out vein.
  • Surgical treatments.

Part 3: Chronic cerebrospinal venous insufficiency

  • Chronic cerebrospinal venous insufficiency.
  • Common symptoms, a common confusion.
    • Chronic fatigue
    • Vision problems
    • Loss of vision in one eye
    • Nystagmus – Oscillopsia
    • Blurred or Double Vision Problems
    • Swallowing difficulties
    • Temperature dysregulation
    • Dysesthesias or “abnormal sensations”
      • Tactile hallucinations and Formication: Strange skin sensations
      • Brachioradial Pruritis – Neuropathic itch
    • Bowel – digestive disorders
    • Bladder problems
    • Cognitive difficulties, depression, and anxiety
    • Amnesia
  • Chronic Cerebrospinal Venous Insufficiency: Breaking away from a Multiple Sclerosis-only type condition.

Part 4: Research on cervical instability and Prolotherapy

  • Non-surgical treatment – Cervical Spine Stability and Restoring Lordosis -Making a case for regeneration and repair of the spinal ligaments.
  • Research on cervical instability and Prolotherapy.
  • Non-surgical treatment – Cervical Spine Stability and Restoring Lordosis -Making a case for regeneration and repair of the spinal ligaments.

Part 1: Symptoms of Internal jugular vein stenosis

Potential symptoms from internal jugular vein compression

Headache, head pressure, eye pain, dizziness, anxiety, visual snow, distorted vision, afterimages, seasickness feeling, unstable visual field, depression depersonalization, brain fog, focusing issues, and hormone imbalance.

Potential symptoms from internal jugular vein compression

What are we seeing in this image below? Internal Jugular Vein Stenosis induced by the C1 transverse mass

Here we have neuroimaging features of the right Internal Jugular Vein Stenosis induced by the C1 transverse mass. Sagittal or side view (A); Axial view (horizontal plane) and D reconstructive (D) CTV images revealing the right transverse mass of C1 compression on the right Internal Jugular Vein. Magnetic resonance venography (C) reveals the right IJV-J3 segment stenosis accompanied by substantially abnormal collateral veins.

This image comes from a paper published in January 2020 in the journal CNS Neuroscience and Therapeutics. (1) In this paper doctors, more so, neurologists, describe a condition of “cervical spondylotic internal jugular venous compression syndrome.”

This is what they wrote: “Although traditional cervical spondylosis including radiculopathy, myelopathy, axial neck pain, and vertebral artery insufficiency has been frequently reported in the literature (medical research), studies focusing on cervical spondylosis‐induced venous outflow disturbance are still lacking. In our clinical practice, we have noticed that a large percentage of Internal Jugular Vein Stenosis patients display osseous (bone) impingement or compression, with the first cervical vertebra (atlas, C1) being the major contributor. As the Internal Jugular Vein passes over the anterior (front) aspect of the transverse process of C1 and once the cervical vertebral structure changes, this Internal Jugular Vein segment is likely to be compressed. Given that, we bring forward a novel concept: “cervical spondylotic internal jugular venous compression syndrome,” to depict the clinical presentations and imaging features in patients with this issue.

Brain venous sinus outflow obstruction. This condition is called venous dysgemia which can lead to intracranial hypertension and result in brain cortex hypoperfusion (reduced blood flow) fusion and resultant cortex hypoperfusion (reduced blood flow to the brain) and brain cell death or brain atrophy.

The following symptoms were noted in these patients:

149 patients with no specific clinical presentations

An April 2021 study in the journal Annals of Translational Medicine (2) reviewed thirteen previously published articles on 149 patient cases. They found in the 149 patients no specific clinical presentations. The most frequent symptoms were headache (46.3%), tinnitus (43.6%), and insomnia (39.6%). The Internal jugular vein (IJV) stenosis occurred on one side in 51 patients (45.9%) and bilateral in 60 (54.1%).

  • Anticoagulants were the most commonly prescribed drug (57.4%).
  • Endovascular treatment (stents) was performed in 50 patients (33.6%), surgery in 55 (36.9%), combined in 28 (18.8%).
  • Improvement of general conditions was reported in 58/80 patients (72.5%). Complications were reported in 23% of cases.
  • Jugular stenosis is a complex and often underestimated disease. Conservative medical treatment usually fails while surgical, endovascular, or a combined treatment improves general conditions in more than 70% of patients.

Brain venous sinus outflow obstruction

Brain venous sinus outflow obstruction. This condition is called venous dysgemia which can lead to intracranial hypertension and result in brain cortex hypoperfusion (reduced blood flow) fusion and resultant cortex hypoperfusion (reduced blood flow to the brain) and brain cell death or brain atrophy.

Symptoms and conditions of cervical spine compression causing internal jugular vein stenosis

A December 2023 case history in the American Journal of Case Reports (3) describes a case of a 74 year-old-man. Here is the summary: “Venous hypertensive myelopathy (the obstruction of brain drainage) is generally closely related to spinal vascular malformations (can be blockage or impingement of the veins and arteries that travel through the neck), but a small number of other causes of venous hypertensive myelopathy have been reported.

CASE REPORT: A 74-year-old man with a C3 to C7 disc herniation, posterior spondylolisthesis (degree I) with spinal stenosis, exhibiting a comparatively swift decline in neurological function as well as MRI-documented spinal cord compression issues. He experienced weakness in his right face and upper and lower extremities, and gait disturbance with increased tone and stiffness, accompanied by numbness on the right side and a decreased pain sensation in the right face, along with poor bowel and urine control.

This patient was thought to have an acute inflammatory process and the patient received methylprednisolone treatments. However, the effect was not significant, and his symptoms worsened.

His medical history, negative laboratory results, evoked potential examination results, and poor effects of anti-inflammatory therapy indicated a low probability of spinal inflammatory disease. Posterior C3-C6 expansive open-door cervical laminoplasty with lateral mass screw insertion and C2 and C7 decompression surgeries were performed. The neurological symptoms significantly improved after the operation.

Venous hypertensive myelopathy can be caused by spondylotic cord compression, leading to spinal cord injury. Therefore, an accurate diagnosis and timely surgery are essential.

Jugular foramen syndrome – dysphagia (swallowing difficulties) and dysarthria (difficulty in speaking)

Another case was presented in the Journal of Neurosurgery Spine (4). Here doctors describe the case of bone spurs. “Jugular foramen syndrome is a condition characterized by unilateral paresis of cranial nerves IX, X, and XI (which can be caused by vertebrae compression). This is a case of a giant cervical osteophyte (bone spur) resulting in compression of the jugular foramen. A 74-year-old man who presented with progressive dysphagia (swallowing difficulties) and dysarthria (difficulty in speaking) was found to have right-sided tongue deviation, left palatal droop, and hypophonia (weak speaking voice). His dysphagia had progressed to the point that he had lost 25 kg (55 pounds) over a 4-month period, necessitating a gastrostomy to maintain adequate nutrition. He underwent extensive workup for his dysphagia with several normal radiographic studies. Ultimately, CT scanning and postcontrast MRI revealed a posterior osteophyte arising from the C1-2 joint space and projecting into the right jugular foramen. This resulted in a jugular foramen syndrome in addition to delayed filling of the patient’s right internal jugular vein distal to the osteophyte. Although rare, a posterior cervical osteophyte should be considered in cases of jugular foramen syndrome.”

Transient monocular blindness is a problem with drainage

This is a symptom we see commonly reported in people seeking our treatments. These people, possibly like yourself will report that suddenly, without warning, they will not be able to see out of one eye. They are blind in that eye. Within a short time, the vision returns. I picked this symptom to focus on because it is one that is more specific to internal jugular vein stenosis.

I have been diagnosed with Idiopathic intracranial hypertension. I have seen many, many specialists. I have had countless tests and countless scans. “Everything,” shows nothing. I keep telling my doctors that all my symptoms go away when I am lying down, when I am lying down for my scans I am not surprised “They show nothing.”  When I am standing I cannot breathe, I blackout,  I have vision problems, and have a diagnosis of transient monocular blindness.

Like the example story above, Transient monocular blindness is a “mystery symptom,” among many “mystery symptoms.” Its causes can be many, its causes can be internal jugular vein compression.

A paper published in the journal BioMed Central Neurology (5) tried to identify why people have this temporary blindness. Here are the summary learning points of this paper

  • The origin of transient monocular blindness in patients without carotid stenosis (traditionally thought of as cardiovascular disease) has been linked to ocular venous hypertension (poor drainage of the fluid inside the eye), increased retrobulbar vascular resistance (the blood vessels resistance to high/low blood pressure flow), sustained retinal venule dilatation (changes in the diameter and length of the retinal vessels typically associated with diabetes) and higher frequency of jugular venous reflux. (The valves of the jugular vein don’t function properly, leading to a backflow of blood through the valves).
  • The researchers of this study found that transient monocular blindness patients suffered from significantly more moderate or severe internal jugular vein stenosis compression/stenosis which could impair cerebral venous outflow. Their results provide evidence supporting that cerebral venous outflow abnormality is one of the etiologies of transient monocular blindness.

Elongated styloid process and/or calcification of the stylohyoid ligament: Eagle Syndrome

As mentioned at the onset of this article, if Eagle syndrome has been suggested to you, please see our article: Eagle syndrome and the diagnosis of stylohyoid complex syndrome, for a more detailed understanding of jugular vein compression caused by a hypermobile or elongated styloid bone. A case study is presented here to demonstrate the attending doctor’s suggestion for the use of Doppler technology.

A patient history was presented by University of Catania researchers in the American Journal of Case Reports (6). Here they describe the case of a 36-year-old woman presented with recurrent episodes of drug-resistant headache and recent memory disturbances. She underwent cerebral and neck multidetector computed tomography-angiography and Doppler ultrasound of the epiaortic vessels that respectively revealed thrombosis of the left cerebral venous sinus ( a blood clot in the sinus that was preventing drainage of the brain’s blood) and left internal jugular vein stenosis due to a very long styloid process. The patient was treated with anticoagulant drugs and experienced a gradual remission of symptoms. Here is what they noted:

“Eagle syndrome is a vascular compression syndrome that is caused by a very elongated styloid process and/or calcification of the stylohyoid ligament compressing the vascular or nerve structures of the neck, resulting in vascular congestion, thrombosis, or neurological symptoms (eg, dysphagia, neck pain, ear pain). Stylo-jugular venous compression syndrome is a subtype of Eagle syndrome and is caused by compression of the internal jugular vein. Treatment varies according to the symptoms and the severity of the compression, and it can be pharmacological or surgical, with vascular stenting and/or removal of the styloid process.”

The doctors concluded: “Compression of the jugular vein by the styloid process is a rare entity, and it often goes undiagnosed when it is asymptomatic. Doppler ultrasound is a sensitive method for identifying jugular vein stenosis and can provide an estimated degree of stenosis, which is useful for treatment planning. Doppler ultrasound should be combined with multidetector computed tomography-angiography to rule out compression of other vascular structures and other causes of compression. Failure to treat these patients could have serious health consequences for them.”

The connection to Ehlers-Danlos syndrome

In January 2024 doctors at Wake Forest School of Medicine publishing in the journal Frontiers in Neurology (7)  noted the co-existence of cerebral venous outflow and connective tissue disorders. The authors write: “There is increasing recognition of connective tissue disorders and their influence on disease in the general population. A conserved clinical phenotype (symptoms) involving connective tissue disorders and idiopathic intracranial hypertension (IIH) and associated cerebral venous outflow disorders has not been previously described.”

In reviewing the cases of 86 patients, the researchers found the majority of these patients carried a diagnosis of Ehlers-Danlos syndrome (55%) and most were non-obese, Caucasian (90%) females (87%). The most prevalent presenting symptoms included pressure headache (98%), dizziness (90%), tinnitus (92%), and cognitive dysfunction (69%).

Aside from cerebral venous outflow disorders and intracranial hypertension, the most common associated conditions were postural orthostatic tachycardia syndrome (POTS; 55.8%), cerebrospinal fluid (CSF) leaks (51.2%), dysautonomia (45.3%), cranio-cervical instability (37.2%), mast cell activation syndrome (25.6%), and tethered cord syndrome (23.3%).

Allergies to medications (87.2%) and surgical tape (19.8%) were also frequent. Despite significantly lower opening pressures on lumbar puncture, headache severity and quality of life scores were reported with the same severity of classic IIH patients, suggesting an underlying hypersensitivity to intracranial pressures and cerebral venous congestion.

In this video:

Ross Hauser, MD discusses some of the common symptoms and conditions associated with intracranial hypertension from internal jugular vein compression, as well as methods we use to determine if this is likely what is causing a patient’s symptoms. We see many patients with intracranial hypertension who come to our center because they have a constellation of symptoms like head pressure, brain fog, eye pain, glaucoma, vision problems, and many others that indicate the root cause may involve their internal jugular vein being compressed in the upper cervical spine.

Most of you who are watching a video on intracranial hypertension and internal jugular vein compression are probably doing it because nobody’s figured out the cause of your problem. To discover something you need to know what you’re looking for so if your doctor doesn’t look for drainage of the brain problem you’re not going to find what may be the primary cause of the patient’s problem.

Even to figure out whether a person’s internal jugular vein is getting compressed you have to have a high degree of suspicion that this is in fact occurring. The first thing you need to know is that the drainage of the brain goes through the neck. Most of the drainage that goes through the neck drains through the veins and some of the brain drains through the lymph system.  That’s why when we do ultrasounds of people’s necks we often find that there’s lymphadenopathy, enlarged lymph nodes not from infection but engorgement from basically “brain poop.” Something (compression) is also stopping the drainage of the lymph nodes.

Brain waste products or “Brain poop”

Brain poop is my terminology to describe the waste products of all the neuron (nerve) activity in the brain. Imagine there are a billion neurons in the brain that are active. There is a lot of waste products.

Let’s stop here for some further explanation of this idea of ‘brain poop.” All cells including the nerve cells produce waste products. Neurons are high energy, high fuel consuming, high by-product producing cells. In other words, they produce a lot of waste. You will recognize some of the waste products the neurons produce, the beta-amyloid and tau proteins implicated as a possible cause of Alzheimer’s disease.

What are we seeing in this image? You need to flush the brain to get rid of neuron poop. The brain functions as a toilet to get rid of its poop.

This may be a whimsical way to metaphorically present this serious problem, but over the last few years, this analogy has developed resonance in our patients as a simple to-the-point understanding of their challenges.

The neurons, as described above, are big consumers of food fuel to create energy. Simply anything that eats a lot usually poops a lot. The brain naturally flushes this poop out with Cerebrospinal fluid (CSF). If for whatever reason, the toilet tank does not fill, the toilet tank does not flush into the brain, the toilet clogs and causes overflow, and the poop does not move out of the brain.

As stated in the captions of these images. Obstruction of the arteries and veins, both into and out of the brain, from cervical instability and wandering vertebrae compressing these vital structures,  will ultimately result in an accumulation of Cerebrospinal fluid (CSF) in various parts of the brain including the frontal lobe. The neuron’s own waste will ultimately suffocate and drown them. This is one explanation for severe brain fog and mental decline in people with upper and lower cervical instability.

Cerebrospinal fluid is akin to toilet water. The metabolic waste products from all the brain activity due to massive cell phone and computer use are accumulated in the cerebrospinal fluid. If there is a stopped up brain toilet (CSF obstruction), then of course the toilet water “bathes” the brain tissue causing toxic brain and the destruction of brain cells.

The majority of this drainage is through the internal jugular vein. This is why we emphasize the internal jugular vein. In the image below you can see how much thicker the internal jugular vein is from the other veins. It is the “big drainage pipe.”

Let’s look at what happens when you have internal jugular vein compression and how can you document it.

This discussion is at 2:35 of the video:

My doctors are telling me I am not draining

Pseudotumor cerebri

Pseudotumor cerebri is brain tumor-like symptoms, but it is not a tumor. Like all these symptoms we have described and you may suffer from, there is confusion when any one symptom or condition is treated in isolation. For example:

I have been suffering from many symptoms. My last diagnosis is pseudotumor cerebri. I have headaches, neck pain, crunching, cracking neck, light sensitivity, dizziness, pressure in the head, pressure behind the eyes, altered heart rate, and blood pressure problems.

My doctors are telling me I am not draining. I have a buildup of cerebrospinal fluid. It is not draining right. I do have the symptoms and I do have head pressure but I do not think the way I am being treated is correct for me. I am not overweight yet they treat me like I have high blood pressure and diabetes. So now they want me to take diuretics, I am on fluid restrictions and salt restrictions. They tell me if this does not work I should consider a spinal tap to “level off,” my fluid levels. Maybe stents or decompression surgery if all this does not help. I do not feel like I am on the right track.

None of this person’s doctors have recommended cervical spine instability until the end-stage treatments of stents and decompression surgery.

Part 2: The causes of internal jugular vein compression


What are we seeing in this image? The causes of internal jugular vein compression

Let’s explain this image further:

We see the internal jugular vein (in blue) passing through the hole of the skull called the jugular foramen which is very close to the atlas and the occiput at the base of the skull.

We also see that the internal jugular vein is right in front of the lateral mass of the C1. So if you have a forward head posture, the atlas is going to wander forward and it can compress the Carotid artery or the jugular vein. In patients, we see the number one cause of internal jugular vein compression is the lateral mass of the C1.

What are we seeing in this image?

We are seeing the upright ultrasound scan of the internal jugular vein (A) Right side (B) Left side. The “graying out” on the left internal jugular vein is occurring because of a very slow blood flow. A condition caused by cervical instability from damaged ligaments causing a slowing of the fluid flows in and out of the brain through the jugular veins.

The "graying out" on the left internal jugular vein is occurring because of a very slow blood flow. A condition caused by cervical instability from damaged ligaments causing a slowing of the fluid flows in an out of the brain through the jugular veins.

Overcrowding in the carotid triangle and the carotid sheath. A cause of internal jugular vein stenosis

There are many keywords in this article. The two main keywords are instability and compression. It is our belief that many of the mystery neurologic symptoms and conditions people suffer from can be traced to cervical spine instability and compression of the vital arteries, nerves, and veins in the neck.

As you may already be aware from your previous examinations, the neck is filled with triangles. Let’s briefly understand their functions and how they relate to your symptoms.

  • The main triangle is the anterior triangle and the anterior triangle is divided into four other triangles. We are going to focus on the anterior triangle and the carotid triangle, but here is a brief understanding of the other triangles.
    • The submental triangle lies under your chin. It contains the submental lymph nodes which are part of the mouth floor drainage system. The floor of the submental triangle is formed by the mylohyoid muscle. The mylohyoid muscle forms the floor of the oral cavity connecting the mandible to the hyoid bone (the tongue bone) in front of the C3 vertebrae.
    • The submandibular triangle lies under your jaw. In the submandibular triangle, you will find the submandibular gland (the second largest of your three salivary glands), and the drainage system lymph nodes. You will also find that the facial artery and the facial vein pass through this triangle. The facial vein drains into the internal jugular vein.
    • The muscular triangle lies lower than the other triangles, there is a question of whether to call this a triangle at all as its borders contain four sides. But look at what lies inside it:
      • the pharynx that connects the mouth and esophagus,
      • the thyroid gland,
      • the parathyroid glands,
      • and the infrahyoid muscles which in part help hold the hyoid bone (the tongue bone) in place.

Are my triangles my problem?

After reading this little section you may be wondering to yourself, are my triangles “off,” Is this why I have thyroid issues? Is this why my spit does not drain? These are questions to ask a medical provider. The possible connections are there.

Transcranial Doppler (TCD) and extracranial Doppler (ECD)

Above I mentioned transcranial Doppler (TCD) and extracranial Doppler (ECD) ultrasound. We utilize a Transcranial Doppler (TCD) to track real-time changes in blood flow to the brain. What we hope to see is how, when you move your head into certain positions, this impacts your blood flow into your brain. If blood flow is compromised through compression/stenosis, so will neurologic function. The end result will be your symptoms. Symptoms and diagnoses such as dizziness, lightheadedness, fainting (drop attacks), imbalance, dysarthria (slurred speech), facial dropping, transient ischemic attacks (weakness or sensory deficits on one side of body/face that resolve completely within an hour), as well as strokes (weakness or sensory deficits on one side of the body/face that last greater than one hour), imply a loss of circulation to the brain or other vital nervous tissue. Patients may complain of “weird” symptoms such as a swishing sound in their ear, numb tongue, numb lips, visual distortions, poor balance, and other symptoms that come and go.

If your blood flow to your brain is intermittently compromised, such as only when the neck is in certain positions, it will be difficult for static imaging to capture the films that your doctors are using to diagnose and plan treatment.

A typical patient’s medical history with static testing

We will often see patients whose medical histories will give obvious testament to the fact that when they move their head one way or another they have symptoms and challenges that were just outlined above. The patient tells us that their symptoms occur when they are upright and/or while they are moving their neck, versus when they are lying flat. Many people tell us that to alleviate their symptoms, they go and lie down. This is also the position that they take their MRIs or MRVs. This is one explanation as to why diagnosis can be difficult or the test results “show nothing.”

Posture-induced changes

At our center, a major factor in deciding a course of treatment is understanding the dynamics of symptom alleviation and severity by the position of the patient’s head in real-time. During the examination we have the patient rotate their heads to all the positions they can manage and monitor symptom changes. Sometimes head rotations in our examination rooms can bring about very dramatic and immediate symptoms. We are replicating the patient’s real-life experience so we can make the best assessment of treatments.

You probably understand the importance of this more than your doctors. You know that if you turn for head to the left and look down, your ears may fill up. You know that if you look to the right and look up you may become instantly dizzy. You know that if you look down a lot your hands may tingle, and you may get bloated. These are examples of how the different positions of your head can make symptoms better or worse. So shouldn’t your tests be taken while you move your head through these various positions?

Unfortunately, many doctors can only rely on static images. The patient lies on a table and has an MRI. Hold still, don’t move. Of course, the image that is taken reflects only the head and neck in that position, not the other positions the patient may be able to achieve and the positions that make their symptoms worse.

Compression of the carotid triangle – The muscles

The muscles of the carotid triangle are seen in green.
The muscles of the carotid triangle are seen in green.

A number of important structures related to symptoms and conditions of cervical spine instability run through the carotid triangle of the neck.

The carotid triangle is formed by three muscles

  • The sternocleidomastoid muscle. This muscle moves your head to the chin to the chest (down) and chin (up) in sky positions. It rotates your head to the left and right and the motion of putting your right ear on your right shoulder and left ear on your left shoulder. Dysfunction of this muscle can cause compression on the carotid triangle during any of these motions.
  • The superior belly of the omohyoid muscle. The omohyoid muscle, which is divided into two parts the superior belly being one, is responsible for many functions, the two we would like to highlight here are its role in normal swallowing (it restores breathing after the swallow) and its responsibility to the carotid sheath. The carotid sheath is the connective tissue, the fascia that surrounds the vascular vessels of the neck. The omohyoid muscle pulls back on the fascia to allow normal or low pressure in the internal jugular vein so blood flow is normalized with the brain.
  • The posterior belly of the digastric muscle with the stylohyoideus. The digastric muscle opens your mouth. The stylohyoideus moves your tongue.

Compression and symptoms related to muscle dysfunction

If there are spasms, dysfunctions, or instability with any of the muscles, you can see the consequence, especially in the acts of eating, chewing, swallowing, saliva buildup, etc. The next question is, why are these muscles in spasm? What is causing them to spasm and compress the nerves, arteries, and veins? Further, as these muscles are tensing what are they doing to the internal jugular vein, the carotid artery, and the cranial nerves?

Compression in the carotid triangle – The cranial nerves

As mentioned above, the carotid sheath is a wrapping of connective tissue or fascia that surrounds the vascular vessels of the neck. It also surrounds the cranial nerves. This is all one neat roll-up of arteries, veins, and nerves. It is also a very tight and compact roll-up packed into this protective tube. But the protective tube can only protect so far. Cervical instability can lead to compression of this tube and all the components within it. This can lead to an impact on the cervical nerves and conditions and symptoms thought to be neurologic in nature.

The cranial nerves within the triangle are:

  • The facial nerve [CN VII or Cranial Nerve 7] is involved in the movements of the face including facial expressions. It is also involved in taste and tear production.
  • The glossopharyngeal nerve [CN IX or Cranial Nerve 9], (helps control speaking, speech, swallowing, saliva, and taste sensation, among other functions).
  • The vagus nerve [CN X or Cranial Nerve 10], the vagus nerve does so many things, we have numerous articles on the vagus nerve’s impact on digestion, involvement with SIBO, Nausea, gastroparesis, urinary incontinence, cervical angina, and so much more.
  • The accessory nerve [CN XI or Cranial Nerve 11] controls the movements of certain neck and shoulder muscles.
  • and the hypoglossal nerve [CN XII or Cranial Nerve 12] which controls almost all the muscles involved in the movement of the tongue.

So here again, compression of the carotid triangle and the carotid sheath impacts the muscles and nerves that pass through the carotid triangle or are squeezed into the carotid sheath. This compression of these structures can lead to or are the possible reasons for your symptoms and conditions. Now let’s talk about the jugular vein and the arteries.

Compression in the carotid triangle – the arteries and veins

For every artery, there is a corresponding vein. The arteries bring fresh, well-oxygenated blood, the veins take the oxygen-depleted blood to the lungs to expel the carbon monoxide and refresh the blood with oxygen.

The largest artery is the carotid artery. There is a carotid artery on the left and right side of your head and neck. The blood flows from the heart through the neck to the brain. In the carotid triangle and neck, the carotid artery splits into two branches to facilitate this blood distribution. The external carotid artery supplies blood to the neck and face, the carotid artery moves the blood to the brain. Some of the larger branches of this complex plumbing network include:

  • The superior thyroid artery which in addition to supplying the thyroid gland with its blood, supplies the larynx.
    • Disruption in this blood distribution can mean thyroid, speech, and swallowing difficulties.
    • The superior thyroid vein drains the blood from the thyroid gland and the larynx down the internal jugular vein.
  • The lingual artery and its branches bring blood to the back of the tongue, and the areas at the back of the throat including the palatoglossal arch, lingual tonsil, soft palate, and epiglottis.
    • Disruption in this blood distribution can mean speech and swallowing difficulties.
    • The lingual vein helps drain the blood to the back of the tongue, and the areas at the back of the throat including the palatoglossal arch, lingual tonsil, soft palate, and epiglottis down the internal jugular vein.
  • The sublingual artery supplies the sublingual gland (salivary gland), the genioglossus (tongue muscle), the geniohyoid (a muscle that moves food down the throat and assists with breathing), the mylohyoid (the floor of the oral cavity), and the mandible.
    • Disruption in this blood distribution means swallowing difficulties, chewing problems, and saliva problems). Within its branches is the sublingual artery that supplies blood to the tip and body of the tongue.
    • The sublingual vein drains the tongue, the sublingual gland, the geniohyoid (a muscle that moves food down the throat and assists with breathing), the mylohyoid (the floor of the oral cavity), and the mandible ultimately down the internal jugular vein.
  • The facial artery supplies blood to all of the face and portions of the mouth.
    • Disruption in this blood distribution can mean facial drooping, speech problems, vision problems, as well as other neuralgic-type symptoms.
    • The facial vein drains the blood from the face and portions of the mouth, down the internal jugular vein.
  • The occipital artery brings blood to the scalp and muscles in the back and neck as well as the sternocleidomastoid muscles, the muscles that help rotate your head from side to side.
    • Disruption in this blood distribution can mean neck pain, spasms, headaches, torticollis or cervical dystonia, nausea, tinnitus, and vertigo.
    • The occipital vein drains the blood from the scalp and muscles in the back and neck into both the external jugular vein and the internal jugular vein.
  • The ascending pharyngeal artery supplies blood to the pharynx.
      • Disruption in this blood distribution can mean swallowing difficulties, chewing problems, and food transit problems from the mouth to the esophagus).
      • The pharyngeal vein helps drain the blood to the pharynx, down the internal jugular vein.

Ground zero: The carotid triangle and the internal jugular vein – When it’s a drainage problem

When it comes to your head and neck, the internal jugular vein is the drainage system. When oxygen-rich blood is delivered to the brain, the oxygen-poor blood must drain out. Blockage of this drainage system leads to oxygen-poor blood backup in the brain.

The veins that surround the cervical vertebrae

Let’s explore a September 2020 study in the journal Frontiers in Neurology (8) on understanding diagnosis and diagnostic testing of Chronic Cerebrospinal Venous Insufficiency. Here are the learning points of this research:

“As an indispensable part of the cerebral venous system, the extracranial cerebrospinal venous system is not fully recognized. This study aimed to analyze the clinical classification and imaging characteristics of chronic cerebrospinal venous insufficiency (CCSVI) quantitatively (higher quality research).”

Explanatory note: The extracranial cerebrospinal venous system includes:

  • The external jugular vein on each side of the neck. The external jugular vein drains blood from the head, face, and parts of the shoulder area around the scapular.

Let’s point out that this is a September 2020 study that acknowledges current medical understanding of the “extracranial cerebrospinal venous system is not fully recognized.”

In this study, 128 patients were diagnosed with chronic cerebrospinal venous insufficiency (CCSVI) by jugular ultrasound and contrast-enhanced magnetic resonance venography (CE-MRV). For the patients with possible extraluminal compression (drainage from the brain and head are being compromised by another source), tests for internal jugular venous stenosis were performed.

  • The causes of extraluminal compression induced Internal jugular vein stenosis included:
    • Osseous compression (Bones are compressing on the internal jugular) (78.95%),
    • Carotid artery (24.21%), (Note the carotid artery itself is compressing the jugular vein).
    • Sternocleidomastoid muscle (5.79%). Note: This muscle moves your head to the chin to chest (down) and chin (up) in sky positions. It rotates your head to the left and right and the motion of putting your right ear on your right shoulder and left ear on your left shoulder. Dysfunction of this muscle can cause compression on the carotid triangle during any of these motions and as seen in this research can be a cause of internal jugular vein stenosis
    • swollen lymph node (1.05%),
    • and unknown reasons (5.26%)

Conclusions: “A multimodal diagnostic system is necessary to improve the diagnostic accuracy of chronic cerebrospinal venous insufficiency (CCSVI). The vertebral venous system is an important collateral circulation for CCSVI, which may be a promising indicator for evaluating Internal jugular vein stenosis degree.” Below we will discuss various testing strategies.

How does venous obstruction (jugular vein stenosis) occur in a neck? An explanation of cervical spine and neck instability

Upper cervical instability is a primary focus of the Hauser Neck Center at Caring Medical Florida. Every day we are making discoveries in patients who have bizarre and disabling neurological symptoms that have gone undiagnosed or unresolved by their local primary care doctors or even other well-known specialty clinics.

What are we seeing in this image?

A cervical venous system that makes its way to the brain.

The brain drains primarily via the internal jugular and vertebral venous plexus. Most venous compression syndromes that lead to such things as brain fog, memory problems, intracranial hypertension, pseudotumor cerebri, dizziness, head pressure, eye pain, and decreased or blurry vision occur at the J3 segment (upper cervical area) of the internal jugular vein. The J3 segment can get impinge by anterior subluxation of the atlas, occipital-atlanta (C0-C1), and atlantoaxial instability (C1-C2) along with altered musculoskeletal biomechanics as occurs with forward head posture. Realigning and stabilizing the atlas while destroying the cervical lordotic curve resolves most venous compression syndromes, including venous hypertension, venous ischemia, and internal jugular venous obstruction and the symptoms with them.

Over the many years of helping people with cervical spine problems, we have come across a myriad of symptoms that seemingly go beyond the orthopedic, musculoskeletal, and neuropathic pain problems commonly associated with cervical spine disorders, “herniated disc,’ and cervical radiculopathy. While many patients can understand that cervical neck instability can cause problems with pinched nerves and pain and numbness that can extend down into the hands or even into the feet, they can have a lesser understanding that their cervical spine instability also pinches on arteries and the veins in the neck and disrupts, impedes and retards blood flow into the brain and the drainage of this blood and other fluids that can cause intracranial pressure and the symptoms we described above and those we will describe below.

The internal jugular vein gets compressed by anterior subluxation of C1 and C0-C1 instability

As mentioned earlier in this article and discussed further in our article on Eagle Syndrome, compression of the internal jugular vein can come from many sources beyond the more researched styloid process. Dr. Enrico Nastro Siniscalchi, (9) maxillofacial surgery and assistant professor at the University of Messina took it one step further and more in agreement with what we have seen in our patients. Basically, the styloid process does not have to be that elongated or even display the type of angulation or measurement deviations discussed in the previously mentioned study. A normal-size styloid process can cause arterial compression if there is cervical spine instability. Even in the presence of a styloid process of normal length, lateral (side) and medial (middle) deviations can occur, in fact, a normal styloid process can cause compression of vessels and nerves.

This is alluded to in a paper and case history published in the journal Vascular Medicine. (10) Here the doctors reported on a case of internal jugular vein thrombosis (blood clot) possibly related to internal jugular vein compression between the styloid process and the first cervical vertebra (C1) transverse process. To support this hypothesis, the doctors performed a radiological assessment of the internal jugular vein and examined its relationship with the styloid process and C1 transverse process in 34 control patients. Their results showed a strong correlation between internal jugular vein diameter and styloid process-C1 transverse process distance. Compared to control subjects, our patient had a short styloid process-C1 transverse process distance, which suggests its involvement in internal jugular vein thrombosis.

The researchers found this so extraordinary that they thought to suggest that this was a new venous entrapment syndrome. We call it cervical spine instability.

Atlantoaxial instability: C1 and C2 hypermobility causes cervical spine instability and artery, vein, and nerve compression

Atlantoaxial instability is the abnormal, excessive movement of the joint between the atlas (C1) and axis (C2). This junction is a unique junction in the cervical spine as the C1 and C2 are not shaped like cervical vertebrae. They are more flattened so as to serve as a platform to hold the head up. The bundle of ligaments that support this joint are strong bands that provide strength and stability while allowing the flexibility of head movement and allowing unimpeded access (prevention of herniation or “pinch”) of blood vessels that travel through them to the brain.

In a 2015 paper appearing in the Journal of Prolotherapy(11) our research team wrote that cervical ligament injury should be more widely viewed as the underlying pathophysiology (the cause of) atlantoaxial instability and the primary cause of cervical myelopathy (disease) including the problems I have written about in this article.

The problems of Atlantoaxial instability are not problems that sit in isolation. A patient who suffers from Atlantoaxial instability will likely be seen to suffer from many problems as they all relate to upper cervical neck ligament damage and cervical instability. As demonstrated below this includes cervical subluxation, (misalignment of the cervical vertebrae). One of the causes of Internal jugular vein stenosis is this cervical misalignment and its “pinching,” or “herniation,” not of a disc, but of the arteries and veins. This creates the situation of ischemia (damage to the blood vessels) or in the case of this article internal jugular vein ischemia.

The case for identifying loss of cervical lordosis as the cause of your symptoms

The cervical ligaments are strong bands of tissues that attach one cervical vertebra to another. In this role, the cervical ligaments become the primary stabilizers of the neck. When the cervical ligaments are healthy, your head movement is healthy, pain-free, and non-damaging. The curve of your cervical spine is in the correct anatomical alignment.

When the cervical spine ligaments are weakened, they cannot hold the cervical spine in proper alignment or in its proper anatomical curve. Your head begins to move in a destructive, degenerative manner on top of your neck. This is when cervical artery and jugular vein compression can occur.

In our 2014 research led by Danielle R. Steilen-Matias, MMS, PA-C, published in The Open Orthopaedics Journal (12), we demonstrated that when the neck ligaments are injured, they become elongated and loose, which causes excessive movement of the cervical vertebrae. In the upper cervical spine (C0-C2), this can cause a number of other symptoms including, but not limited to, nerve irritation, vertebrobasilar insufficiency with associated vertigo and dizzinesstinnitus, facial pain, arm pain, migraine headaches, and jugular vein compression.

Treating and stabilizing the cervical ligaments can alleviate these problems by preventing excessive abnormal vertebrae movement, the development or advancement of cervical osteoarthritis, and the myriad of problematic symptoms they cause including nerve, vein, and arterial compression.

Through extensive research and patient data analysis, it became clear that in order for patients to obtain long-term cures (approximately 90% relief of symptoms) the re-establishment of some lordosis, (the natural cervical spinal curve) in their cervical spine is necessary. Once spinal stabilization is achieved and the normalization of cervical forces by restoring some lordosis, lasting relief of symptoms is highly probable.

The Horrific Progression of Neck Degeneration with Unresolved Cervical Instability

The Horrific Progression of Neck Degeneration with Unresolved Cervical Instability. Cervical instability is a progressive disorder causing a normal lordotic curve to end up as an “S” or “Snake” curve with crippling degeneration.

Cervical spine ligaments as a cause of intracranial hypertension – So why this diagnosis of internal jugular vein stenosis?

For many, it is because the symptoms they, you, suffer from are not responding to the other diagnoses and treatments and internal jugular vein stenosis is usually not at the top of anyone’s list to check for unless there is also the frequency of blackouts, mini-strokes, cognitive difficulties, and amnesia.

So when other doctors write up case histories of the patients they see with internal jugular vein stenosis and publish them in the medical literature, we get excited. We get excited for the people who contact us because not only do we see these problems related to internal jugular vein stenosis but these other doctors are seeing the problem. The medical community is recognizing that this can be a cause of your symptoms. There is a degree of hope in that statement.

Now let’s look at an April 2021 patient case history presented in The Journal of International Medical Research (13). “Cerebral venous sinus thrombosis (a blood clot that prevents the brain from draining) has distinct risk factors and is frequently overlooked because of its initially nonspecific clinical presentation.” In other words, doctors are not looking for this. In this case study, the doctors presented the story of a 72-year-old man who developed Cerebral venous sinus thrombosis in the right lateral sinus. “Despite the absence of common risk factors in this patient, he developed external compression of the bilateral internal jugular veins by a lateral mass of the C1 vertebra and expansion of the carotid artery. (In other words, the C1 was pressing on the internal jugular veins.)” Treated with medication and surgery the patient achieved a recovery. The case however suggests that: “external compression of the internal jugular veins, (in this case pressure from the C1)  which can be identified with three-dimensional computed tomography venography, may be an important risk factor for Cerebral venous sinus thrombosis.”











Medication for jugular vein compression

In August 2019, a paper published in The Journal of International Medical Research (14) described the cases of two 61-year-old women for whom they identified jugular vein compression, caused by a tortuous internal carotid artery compression, as the culprit in their health problems. The use of the word “tortuous” describes that the carotid artery has “altered its course,” it is wandering around in the carotid sheath and triangle and crowding the jugular and nerves.

The first case: Explanatory notes and summary:

  • A 61-year-old woman presented with an 11-year history of dryness and a feeling of high pressure in both eyes accompanied by a headache. She reported that her headache had worsened approximately 2 weeks previously, especially in the right temporal region, with neck discomfort and insomnia.
  • Contrast-enhanced MRV (MR venography) of the neck showed segmental stenosis in the bilateral (both sides of her neck) jugular vein due to compression of the adjacent internal carotid arteries.
  • The patient was treated with intravenous (Xueshuantong –  patented traditional Chinese medicine), oral aspirin, oral atorvastatin (used to treat angina, stroke, heart attack, and blood vessel problems), and oral probucol (for coronary artery disease). The medications helped reduce her symptoms.

The second case: Explanatory notes and summary:

  • A 61-year-old woman presented with a 10-year history of intermittent headache, especially in the left temporal region, and bilateral high-frequency tinnitus. Four months before presentation, these symptoms had worsened and become accompanied by insomnia. She had no history of medications.
  • Contrast-enhanced MRV (MR venography) of the neck showed focal stenosis of the jugular vein on both sides of her neck due to compression of the adjacent internal carotid arteries.
  • The patient was treated with intravenous ginaton (a Ginkgo Biloba extract, oral betahistine (for vertigo-type symptoms), and oral estazolam (for impaired memory and coordination). Her symptoms were partially resolved.

Comment: The source of these two women’s problems was attributed to the jugular vein being compressed on both sides of their neck by the carotid arteries. The only treatments they were offered were medications for the symptoms. Based on the results, some of the symptoms were lessened but the problems remained. The problem was identified, but treatments that could help more were not.

Stenting

For some people, stenting will be a successful procedure or at least a successful enough procedure to allow normal blood flow to resume through the jugular veins. This could alleviate symptoms until a more long-term solution can be arrived at. However, when there is compression from the lateral masses of the C1 or cervical instability from C0-C2, elongated styloid bone, or hyoid bone, stenting alone, in many cases, will provide good relief and in some cases make the patient’s situation worse. First, let’s talk about when stenting would work.

A February 2018 study in the European Journal of Neurology (15) looked for the answer to idiopathic intracranial hypertension in internal jugular vein stenosis. What they were especially looking for was when brain scans revealed nothing or as the researchers put it “the absence of intracranial abnormalities.” The focus here is what was going on inside the brain.

  • Fifteen patients with internal jugular vein stenosis had stents put in.
  • Blood flow normalized, symptoms of headache, tinnitus, papilledema (swelling of the optic nerve), and increased intracranial pressure were significantly relieved at a two-week follow-up.
  • At one year, the headache disappeared in 14 out of 15 patients (93.3%), visual impairments were recovered in 10 of 12 patients (83.3%) and tinnitus resolved in 10 out of 11 patients (90.9%).
  • The researchers concluded: “Stenting seems to be a promising option to address the issue of intracranial hypertension from the etiological (what is causing it) level, particularly after medical treatment failure.” Typically the medication route.

Extracranial venous abnormalities: When the problem is not inside the brain but in the cervical spine, this is where stents are going to be a problem.

The people who have success with stents opening up the jugular vein are not the people we see. We see the people who have stents in their blood vessels that did not help and for some put them in a worse situation. We are not the only center to see this.

Here is a June 2018 study published in the journal CNS Neuroscience and Therapeutics. (16) In this paper, as opposed to intracranial abnormalities, they are going to explore “Extracranial venous abnormalities.” Problems coming from outside the brain. Explanatory notes are added in italics.

“Extracranial venous abnormalities, especially jugular venous outflow disturbance, were originally viewed as nonpathological (treatable, solvable) phenomena due to a lack of realization and exploration of their feature and clinical significance.”

(Basically, jugular venous outflow disturbance was thought to be easily treatable using stents. However, as we shall see when the stents failed, doctors realized that they did not realize how complicated jugular venous outflow disturbance could be. It was just not a “plumbing problem of a clogged vein.”)

“The etiology and pathogenesis are still unclear, (for many, where their jugular vein blood flow problems are coming from, is still unclear) whereas a couple of causal factors (causal factors are causes that would not be normally considered in a traditional setting)  have been conjectured.

The clinical presentation of this condition is highly variable, ranging from insidious (gradual onset with no symptoms) to symptomatic, such as headaches, dizziness, pulsatile tinnitus, visual impairment, sleep disturbance, and neck discomfort or pain. Standard diagnostic criteria are not available, and current diagnosis largely depends on a combinatory use of imaging modalities.

Although few types of research have been conducted to gain an evidence‐based therapeutic approach, several recent advances indicate that intravenous angioplasty (balloon angioplasty) in combination with stenting implantation may be a safe and efficient way to restore normal blood circulation, alleviate the discomfort symptoms, and enhance patients’ quality of life.

In addition, surgical removal of structures (this would be cervical vertebrae decompression) that constrain the internal jugular vein may serve as an alternative or adjunctive management when endovascular (the balloon angioplasty and stents) intervention is not feasible.”

Finally:

“Extrinsic (from the outside) compression of the internal jugular vein secondary to the osseous and muscular origins (such as the styloid process, the posterior belly of the digastric muscle, and the transverse process of an adjacent vertebra) has been found in a set of unselected patients who underwent computed tomography angiography (CTA). However, some of the internal jugular vein stenosis may not be taken as pathological considering no evidence of abnormal collateral (secondary) formation.

Patients may display central venous hypertension‐associated symptoms when this impingement either occurs bilaterally or affects the dominant internal jugular vein. Surgical resection of culprit structures is gradually emerging as the choice of treatment. Among patients with identified extrinsic impingement of the internal jugular vein between the styloid process and the lateral mass of the cervical vertebra at the C1 segment, venous stenting alone was deemed ineffective given the compressive nature and delayed stenting complications were also recorded.”

And this is what we see

  • We see people where stents failed.
  • We see people with cervical instability, especially C0-C2 instability, causing compression of venous outflow (which can be documented by transcranial Doppler (TCD) and extracranial Doppler (ECD) ultrasound examinations). The internal jugular vein is almost always compressed at J3 because of issues from occipital C0-2 including subluxations and instability.
  • We see people with cervical kyphosis (excessive spinal curvature), especially with hyperextension of C1. This can cause venous compression of the internal jugular vein at the J3 segment.
  • In many candidates, we can avoid surgery.

Can you stent a stretched-out vein? When vein narrowing is caused by a stretched-out vein

What are we seeing in this image?

A blue balloon is used to demonstrate stenosis of a different kind. The stretched-out or elongated vein stenosis. This is stenosis caused by cervical spine instability and a loss of the natural cervical spine curve. Look at the blue balloon in its normal resting state on the left. Note how much wider it is than the eleven inches, a stretched-out version of itself on the right. The stretched-out version of itself has less inner space for the blood to drain.

The vein is represented by the blue balloon. When the balloon is stretched to 9 inches it has more space for the blood to flow than when it is stretched to 11 inches. A narrowing occurs. The more stretching of the vein the less space is contained within the vein for the blood flow and for drainage of fluids that need to be moved out of the brain.

The main danger of brain venous congestion is that it increases intracranial pressure, this pressure is then transmitted to the brain’s arteries, which then increases blood flow to ensure adequate oxygenation of the brain. If the blood vessels cannot respond because of their obstruction in the neck, then brain ischemia can ensue.

The brain’s blood vessels may initially be able to respond via autoregulation (increases in blood vessel diameter in the brain) for a time, but if the cervical/brain venous congestion continues because of cervical dysstructure and cervical instability, the increased intracranial pressure will eventually damage the brain neurons, and ultimately, the brain tissue itself.

While the most common cause of arterial or venous obstruction in patients seen at Caring Medical is narrowing caused by cervical instability, it can also be from autonomic nervous dysfunction. Autonomic nervous dysfunction or dysautonomia can cause detrimental changes in the arterial blood flow to the brain or venous blood flow out.

One reason is that the vein is getting stretched out in the neck. How? One way is that the patient’s head is moving forward on their shoulders. When the head is in this position, the veins get pulled on and stretched out. This narrows the veins. A narrowed vein has less room for blood and fluid to flow in, this narrowing is caused by cervical spine instability, which leads the head forward and is characteristic of the problems faced with stenosis.

Surgical treatments

While this article will deal with non-surgical management of restoring the cervical spine’s natural curve and alleviating compression on the internal jugular vein, there are times when surgery may be necessary.

A September 2023 study of 14 patients from the Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (17) reported these outcomes:

“Internal jugular vein (IJV) stenosis is associated with several neurological disorders including idiopathic intracranial hypertension (IIH) and pulsatile tinnitus. In cases of extreme bony compression causing stenosis in the intercondylar (between bones) region, surgical decompression might be necessary.”

In this paper, fourteen patients with IJV stenosis were diagnosed with suffering from persistent headaches and/or tinnitus. Six patients were diagnosed with idiopathic intracranial hypertension, three of whom failed previous conservative care treatment. Of the eight remaining patients, two failed previous treatment.

  • All fourteen patients underwent surgical IJV decompression via styloidectomy, the release of soft tissue, and removal of the C1 transverse process.

Imaging showed improvement in correcting the stenosis.

  • All 14 patients showed improvement in IJV stenosis. This was considered significant in eleven patients and mild improvement in three patients.

Improvement in symptoms:

  • Eight patients had significant improvement in their presenting symptoms, and three had partial improvement. Two patients received IJV stenting after a lack of initial improvement.

Side effects:

  • Two patients experienced cranial nerve paresis, and one developed a superficial wound infection.

Part 3: Chronic cerebrospinal venous insufficiency

In this section, a brief summary of symptoms and conditions of Chronic Cerebrospinal Venous Insufficiency outside of a primary diagnosis of Multiple Sclerosis, Alzheimer’s Disease, and Parkinson’s Disease are discussed. At our center we do not treat these diseases, we treat craniocervical instability, upper cervical spine instability, cervical spine instability, or problems related to neck pain and loss of cervical spine curvature that may share common symptoms and characteristics of neurological-like and vascular-like disorders such as those just mentioned.

Common symptoms, a common confusion

We are often contacted by people who had symptoms of Multiple Sclerosis but a brain MRI ruled MS out. This however left the patient and their neurologist at a loss as to what may be causing the person’s MS-like symptoms and conditions. Craniocervical Instability, upper cervical spine instability, cervical spine instability, and Multiple Sclerosis share the following challenges.  This of course is a general guide, in both Multiple Sclerosis and cervical spine instability, the symptoms and conditions can vary greatly and appear more or less severe in people.

Fatigue

  • Chronic fatigue. Many people who reach out to us have a diagnosis of Myalgic encephalomyelitis (muscle pain from nerve inflammation) or Chronic Fatigue Syndrome. Fatigue in these people is part of a complex medical history. Sometimes this is diagnosed as Fibromyalgia.

Vision problems

Swallowing difficulties

Temperature dysregulation

As noted in a detailed paper in the Journal of Applied Physiology (18), people with a diagnosis of MS may suffer from problems of heat sensitivity, central regulation of body temperature; and thermoregulatory effector responses (the ability to maintain a core body temperature). These are the same challenges people not diagnosed with MS but have cervical instability suffer from as well. Please see my articles:

Dysesthesias or “abnormal sensations”

Some MS patients share a common characteristic with cervical spine instability patients in that they sense “weird” or “strange” sensations beyond numbness and tingling or electric shock sensation in their skin.

Some of the common characteristics a cervical spine instability patient may experience:

Bowel – digestive disorders 

Some of the common characteristics of a cervical spine instability patient may experience conditions related to poor digestion. Please see my articles:

Bladder problems

Some of the common characteristics of a cervical spine instability patient may experience conditions related to urinary problems including the need to urinate more frequently and urgently which may ultimately lead to a loss of bladder control and urge incontinence problems.

Cognitive difficulties, depression, and anxiety

These conditions and problems are of course and unfortunately very common in all people who suffer from chronic medical conditions. We will discuss these challenges later in this article.

Amnesia

In July 2015, doctors reported in the medical journal PloS One (19) a link between obstruction of venous drainage and transient global amnesia. Transient global amnesia is a sudden, temporary memory loss without stroke or epileptic seizure. Simply, the patient’s ability to recall recent events disappears. They can not remember where they are or the sequence of events that got them there. Here is what the researchers observed and recorded:

Abnormal extracranial venous drainage modality has been considered an etiology of transient global amnesia.  The researchers suggested that obstruction of internal jugular venous drainage is a contributing factor in transient global amnesia pathogenesis. What they found was when patients with transient global amnesia were compared to patients without transient global amnesia, transient global amnesia patients had significantly higher rates of moderate and severe compression/stenosis at the bilateral upper-IJV segment in left brachiocephalic vein and in transverse sinus hypoplasia (less cells). The prevalence of at least one site of venous compression/stenosis in the internal jugular venous or brachiocephalic vein was significantly higher in patients than in controls.

In February 2019, the same researchers added to these findings. Publishing in the journal Frontiers in Neurology (20) doctors wrote: “Previous neuroimaging and ultrasound studies suggested that compression and stenosis of the internal jugular vein in patients with transient global amnesia may impair internal jugular vein drainage, while a patent internal jugular venous releases intracranial pressure caused by the Valsalva maneuver (forcing exhales against obstructed or blocked structures). The researchers noted that they could confirm that the total venous flow decreases in the IJVs and vertebral veins of the patients with transient global amnesia. This is consistent with the findings of previous MR imaging studies that have reported on compression and stenosis of the draining veins.

Chronic Cerebrospinal Venous Insufficiency: Breaking away from a Multiple Sclerosis-only type condition

Please see my companion article Chronic Cerebrospinal Venous Insufficiency and neurologic-like problems.

Chronic Cerebrospinal Venous Insufficiency is exactly what it sounds like. You have a chronic problem moving cerebrospinal fluid out of the brain via the venous or vein network.

A 2019 study in the journal Reviews on Recent Clinical Trials (21) examined Chronic Cerebrospinal Venous Insufficiency and its relationship with Multiple Sclerosis and found that this condition could be prevalent in other disorders. Here is what the researchers wrote:

“About 10 years ago, the so-called chronic cerebrospinal venous insufficiency syndrome was discovered. This clinical entity, which is associated with extracranial venous abnormalities that impair venous outflow from the brain, was initially found exclusively in multiple sclerosis patients. Currently, we know that such venous lesions can also be revealed in other neurological pathologies, including Alzheimer’s and Parkinson’s diseases. Although the direct causative role of chronic cerebrospinal venous insufficiency in these neurological diseases still remains elusive, in this paper, we suggest that perhaps abnormal venous drainage of the brain affects the functioning of the glymphatic system (the waste clearance system of the central nervous system) which in turn results in the accumulation of pathological proteins in the cerebral tissue (such as β-synuclein, β-amyloid, and α-synuclein) and triggers the venous outflow from the cranial cavity and circulation of the cerebrospinal fluid in the settings of neurodegenerative disease.”

In this paper, there is an identification with the brain being unable to drain wastes and that these accumulated wastes would lead to degenerative disorders. Here we find similarities in our cervical spine instability patients. We will discuss this important concept shortly.

Non-surgical treatment – Cervical Spine Stability and Restoring Lordosis -Making a case for regeneration and repair of the spinal ligaments


Cervical instability on DMX

Research on cervical instability and Prolotherapy

Caring Medical has published dozens of papers on Prolotherapy injections as a treatment for difficult-to-treat musculoskeletal disorders. We are going to refer to two of these studies as they relate to cervical instability and a myriad of related symptoms including the problems spoken of in this article.

We are going to go briefly outside of our own research and observation to present two independent studies. In our research that we will demonstrate below, we were able to get good outcomes with simple dextrose Prolotherapy injections that stimulated the repair and restoration of the damaged cervical neck ligaments. This helped restore the normal anatomical alignment of the head and neck. In this research below, we will explore the proper alignment that came from chiropractic studies.

In 2019, published in the medical journal Brain Circulation,(22) Evan Katz, a private practitioner published the findings of his office in treating the Cervical lordosis of seven patients (five females and two males, 28–58 years). “The aim of this study is to evaluate cerebral blood flow changes on brain magnetic resonance angiogram (MRA) in patients with loss of cervical lordosis before and following correction of cervical lordosis.”

These are some of the study’s learning points:

  • Loss of lordosis of the cervical spine is associated with decreased vertebral artery hemodynamics. “Vertebral arteries proceed superiorly, in the transverse foramen of each cervical vertebra, and merge to form the single midline basilar artery” which continues to the circle of Willis and cerebral arteries. Based on this close anatomical relationship between the cervical spine, the vertebral arteries, and cerebral vasculature, we hypothesized that improvement in cervical hyperlordosis increases collateral cerebral artery hemodynamics and circulation. This retrospective consecutive case series evaluates brain magnetic resonance angiogram (MRA) in patients with cervical hyperlordosis before and following the correction of cervical lordosis.

Note: The study cites a paper from Yuzuncu Yil University, Medical Faculty in Turkey published in the journal Medical Science Monitor. (23) In this study the research team suggests:

Because the loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. . . the possible effects of loss of cervical lordosis on vertebral artery hemodynamics and their clinical outcomes are completely unknown. Because the vertebral arteries are the major source of blood supply to the cervical spinal cord and brain stem, the possible factors affecting these vessels warrant investigation.”

The study from Dr. Katz is one of the studies of further investigation. Following chiropractic adjustments he noted:

“This retrospective consecutive case series was performed to test the hypothesis that loss of cervical lordosis may be associated with the circle of Willis (the junction of several arteries at the base of the brain) and cerebral artery hemodynamics (More simply blood flow). The results of this case series revealed that the circle of Willis and cerebral artery parameters were significantly different between pre-and-post cervical adjustments with preadjustment values showing lower values in comparison to post-adjustment values. .  . Our findings demonstrate preliminary evidence that loss of cervical lordosis may play a role in the development of changes related to the circle of Willis and cerebral artery hemodynamics and decreased blood flow in the brain.”

Summary and contact us. Can we help you? How do I know if I’m a good candidate?

We hope you found this article informative and that it helped answer many of the questions you may have surrounding the challenges that internal jugular vein stenosis may be causing you. Just like you, we want to make sure you are a good fit for our clinic prior to accepting your case. While our mission is to help as many people with chronic pain as we can, sadly, we cannot accept all cases. We have a multi-step process so our team can really get to know you and your case to ensure that it sounds like you are a good fit for the unique testing and treatments that we offer here.

Reach out to the Hauser Neck Center Patient team here

References

1 Ding JY, Zhou D, Pan LQ, Ya JY, Liu C, Yan F, Fan CQ, Ding YC, Ji XM, Meng R. Cervical spondylotic internal jugular venous compression syndrome. CNS neuroscience & therapeutics. 2020 Jan;26(1):47-54. [Google Scholar]
2 Scerrati A, Norri N, Mongardi L, Dones F, Ricciardi L, Trevisi G, Menegatti E, Zamboni P, Cavallo MA, De Bonis P. Styloidogenic-cervical spondylotic internal jugular venous compression, a vascular disease related to several clinical neurological manifestations: diagnosis and treatment—a comprehensive literature review. Annals of Translational Medicine. 2021 Apr;9(8). [Google Scholar]
3 Li C, Wang Y, Fan S, Liu Y, Chen Y, Wang J, He X. Cervical Spondylosis as a Potential Cause of Venous Hypertensive Myelopathy: A Case Report. The American Journal of Case Reports. 2023;24:e942149-1. [Google Scholar]
4 Le AQ, Walcott BP, Redjal N, Coumans JV. Cervical osteophyte resulting in compression of the jugular foramen: case report. Journal of Neurosurgery: Spine. 2014 Oct 1;21(4):565-7. [Google Scholar]
5 Cheng CY, Chang FC, Chao AC, Chung CP, Hu HH. Internal jugular venous abnormalities in transient monocular blindness. BMC neurology. 2013 Dec;13(1):1-6. [Google Scholar]
6 Farina R, Foti PV, Pennisi I, Conti A, Meli GA, Vasile T, Gozzo C, Tallamona E, Inì C, Palmucci S, Venturini M. Stylo-Jugular Venous Compression Syndrome: Lessons Based on a Case Report. The American Journal of Case Reports. 2021;22:e932035-1. [Google Scholar]
7 Midtlien JP, Curry BP, Chang E, Kiritsis NR, Aldridge JB, Fargen KM. Characterizing a new clinical phenotype: the co-existence of cerebral venous outflow and connective tissue disorders. Frontiers in Neurology. 2024 Jan 10;14:1305972. [Google Scholar]
8 Wang Z, Ding J, Bai C, Ding Y, Ji X, Meng R. Clinical Classification and Collateral Circulation in Chronic Cerebrospinal Venous Insufficiency. Frontiers in Neurology. 2020;11. [Google Scholar]
9 Siniscalchi EN. Dynamic imaging in suspected Eagle syndrome. European Archives of Oto-Rhino-Laryngology. 2020 Jan 1;277(1):307-. [Google Scholar]
10 Pokeerbux MR, Delmaire C, Morell-dubois S, Demondion X, Lambert M. Styloidogenic compression of the internal jugular vein, a new venous entrapment syndrome?. Vascular Medicine. 2020 Mar 18:1358863X20902842. [Google Scholar]
11 Hauser R, Steilen-Matias D, Fisher P. Upper cervical instability of traumatic origin treated with dextrose prolotherapy: a case report. Journal of Prolotherapy. 2015;7:e932-e935.
12 Steilen D, Hauser R, Woldin B, Sawyer S. Chronic neck pain: making the connection between capsular ligament laxity and cervical instability. The open orthopaedics journal. 2014;8:326. [Google Scholar]
13 Guan J, Song S, Wang W, Ji X, Meng R. Cerebral venous sinus thrombosis due to external compression of internal jugular vein. Journal of International Medical Research. 2021 Apr;49(4):03000605211006609. [Google Scholar]
14 Li M, Su C, Fan C, Chan CC, Bai C, Meng R. Internal jugular vein stenosis induced by tortuous internal carotid artery compression: two case reports and literature review. Journal of International Medical Research. 2019 Aug;47(8):3926-33. [Google Scholar]
15 Zhou D, Meng R, Zhang X, Guo L, Li S, Wu W, Duan J, Song H, Ding Y, Ji X. Intracranial hypertension induced by internal jugular vein stenosis can be resolved by stenting. European journal of neurology. 2018 Feb;25(2):365-e13. [Google Scholar]
16 Zhou D, Ding JY, Ya JY, Pan LQ, Yan F, Yang Q, Ding YC, Ji XM, Meng R. Understanding jugular venous outflow disturbance. CNS neuroscience & therapeutics. 2018 Jun;24(6):473-82. [Google Scholar]
17 Yang K, Shah K, Begley SL, Prashant G, White T, Costantino P, Patsalides A, Lo SF, Dehdashti AR. Extreme lateral infracondylar approach for internal jugular vein compression syndrome: A case series with preliminary clinical outcomes. Acta Neurochirurgica. 2023 Sep 1:1-0. [Google Scholar]
18 Davis SL, Wilson TE, White AT, Frohman EM. Thermoregulation in multiple sclerosis. Journal of Applied Physiology. 2010 Nov;109(5):1531-7. [Google Scholar]
19 Han K, Chao AC, Chang FC, Chung CP, Hsu HY, Sheng WY, Wu J, Hu HH. Obstruction of venous drainage linked to transient global amnesia. PloS one. 2015 Jul 14;10(7):e0132893. [Google Scholar]
20 Han K, Hu HH, Chao A, Chang FC, Chung CP, Hsu HY, Sheng WY, Wu J. Transient global amnesia linked to impairment of brain venous drainage: an ultrasound investigation. Frontiers in neurology. 2019 Feb 5;10:67. [Google Scholar]
21 Simka M, Skuła M. Potential involvement of impaired venous outflow from the brain in neurodegeneration: Lessons learned from the research on chronic cerebrospinal venous insufficiency. Reviews on recent clinical trials. 2019 Dec 1;14(4):235-6. [Google Scholar]
22 Katz EA, Katz SB, Fedorchuk CA, Lightstone DF, Banach CJ, Podoll JD. Increase in cerebral blood flow indicated by increased cerebral arterial area and pixel intensity on brain magnetic resonance angiogram following correction of cervical lordosis. Brain circulation. 2019 Jan;5(1):19. [Google Scholar]
23 Bulut MD, Alpayci M, Şenköy E, Bora A, Yazmalar L, Yavuz A, Gülşen İ. Decreased vertebral artery hemodynamics in patients with loss of cervical lordosis. Medical science monitor: international medical journal of experimental and clinical research. 2016;22:495. [Google Scholar]

This article was updated April 16, 2024

 

Get Help Now!

You deserve the best possible results from your treatment. Let’s make this happen! Talk to our team about your case to find out if you are a good candidate.